

MECHANICAL DATA

Dimensions in mm (inches)

7.62 (0.300) 7.12 (0.280) 0.33 (0.013) 0.08 (0.003) Rad. 0.43 (0.017) 0.18 (0.007 Rad. 1.65 (0.065) 1.40 (0.055)

NPN SILICON TRANSISTORS

FEATURES

- · Hermetically sealed ceramic surface mount package
- Small footprint
- Simple drive requirements

LCC4 CERAMIC SURFACE MOUNT PACKAGE

Underside View

Pads 6, 7, 8, 9, 10, 11, 12, 13. Source Pads 4,5 Gate Pads 1,2,15,16,17,18 Drain

Pads 3,14 **Not Connected**

ABSOLUTE MAXIMUM RATINGS T_{CASE} = 25°c unless otherwise stated

V_{CBO}	Collector – Base Voltage(I _E = 0)	100V
V_{CEO}	Collector – Emitter Voltage (I _B = 0)	100V
V_{EBO}	Emitter – Base Voltage ($I_C = 0$)	6V
I _C	Collector Current	5A
I _{CM}	Collector Peak Current	7A
I_{B}	Base Current	1A
P_{tot}	Total Dissipation at T _{case} ≤ 25°C	6W
	T _{amb} ≤ 25°C	1W
T_{stg}	Storage Temperature Range	−65 to +200°C
T _j	Junction temperature	200℃

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: sales@semelab.co.uk

Website: http://www.semelab.co.uk

Document Number 2976

Issue: 1

THERMAL DATA

R _{thj-case}	Thermal Resistance Junction-case	Max	29.2	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	Max	175	°C/W

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise stated)

Parameter		Test Conditions		Min.	Тур.	Max.	Unit
I _{CBO}	Collector Cut Off Current	I _E = 0	V _{CB} = 100V			10	μA
I _{CEX}	Collector Cut Off Current	V _{BE} = 1.5V	V _{CE} = 90V			10	μA
			T _{case} = 150°C			1	mA
I _{CEO}	Collector Cut Off Current	I _B = 0	V _{CE} = 90V			100	μΑ
V _{CEO(sus)*}	Collector Emitter Sustaining Voltage	I _B = 0	I _C = 50mA			100	V
V _{CE(sat)*}	Collector Emitter Saturation Voltage	I _C = 2A	I _B = 0.2A			0.7	V
		I _C = 5A	$I_{B} = 0.5A$			1.2	
V _{BE(sat)*}	Base Emitter Voltage	I _C = 2A	$I_{B} = 0.2A$			1.2	V
		I _C = 5A	$I_{B} = 0.5A$			1.8	
h _{FE*}	DC Current Gain	$I_{C} = 0.5A$	2N5338	30			
		$V_{CE} = 2V$	2N5339	60			
		I _C = 2A	2N5338	30		150	
		$V_{CE} = 2V$	2N5339	60		240	
		I _C = 5A	2N5338	20			
		$V_{CE} = 2V$	2N5339	40			
f _T	Transistion Frequency	I _C =0.5mA	V _{CE} = 10V	30			MHz
C _{CBO}	Collector Base Capacitance	I _E = 0	V _{CB} = 10V			050	pF
		f = 0.1MHz				250	
t _{on}	Turn-on Time	I _C = 2A	V _{CC} = 40V			200	ns
		$I_{B1} = 0.2 \text{mA}$				200	
t _s	Storage Time	I _C = 2A	$V_{CC} = 40V$			2.5	μs
t _f	Fall Time	I _{B1} = - I _{B2} =	0.2A			200	ns

^{*} Pulse test $t_p = 300\mu s$, Duty Cycle 1.5%

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk