

Quad TTL-to-ECL Translator Product Specification

ECL Products

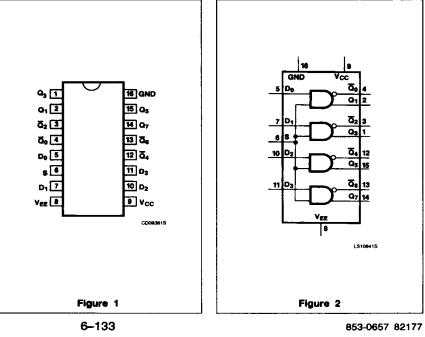
DESCRIPTION

The 10124 is a Quad TTL – ECL Translator with an individual Data and a common Select TTL-compatable input on each gate. When the Select input is in the LOW state, all ECL non-inverting outputs are in a LOW state and inverting outputs are in a HIGH state.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-i _{ee})
10124	3.5ns	53mA

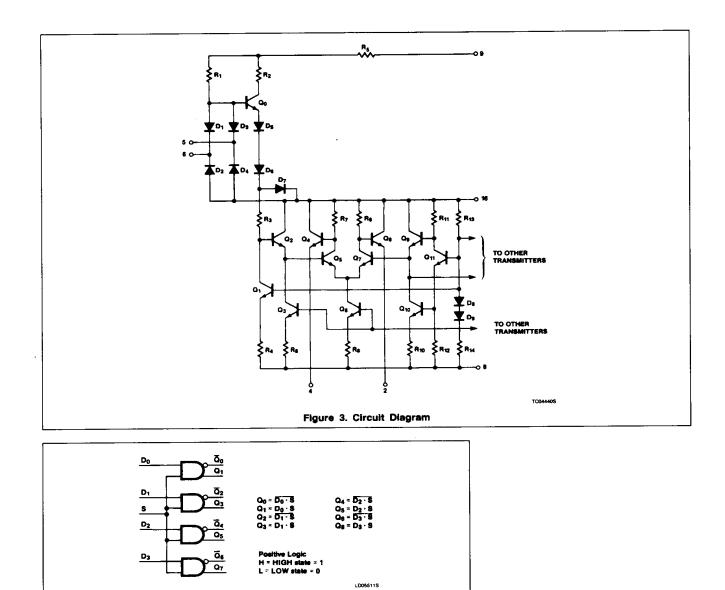
ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC} = +5V$, GND = 0V, $V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10124N
Ceramic DIP	10124F


PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₃	Data Inputs (Schottky TTL)
S	Select Input (Schottky TTL)
Q ₁ , Q ₃ , Q ₅ , Q ₇	Data Outputs (AND) (10K ECL)
Q ₀ , Q ₂ , Q ₄ , Q ₆	Data Outputs (NAND) (10K ECL)

LOGIC SYMBOL


6

January 30, 1986

Downloaded from Datasheet.su

10124

January 30, 1986

6-134

This Material Copyrighted By Its Respective Manufacturer

Figure 4. Logic Diagram

10124

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER		10K ECL	UNIT	
VEE	Supply voltage (negative)	-8.0			
V _{CC}	Supply voltage (positive)		+ 7.0	v	
VIN	Input voltage (VIN should never be more p	positive than V _{CC3})	0 to V _{CC}	V	
lo	Output current		-50	mA	
T _S	Storage temperature		-55 to +150	°C	
		Ceramic package	+ 165	°C	
Ťj	Maximum junction temperature	+ 150	°C		

DC OPERATING CONDITIONS

	PARAMETER					
	Min	Nom	Max	UNIT		
GND	Device ground (common)	0	0	0	V	
Vcc	Supply voltage (positive)		1	5.0		V
VEE	Supply voltage (negative)			-5.2		V
		T _A = -30°C	2.0		4.0	V
VIH	HIGH level input voltage	T _A = +25°C	1.8		4.0	v
		$T_{A} = +85^{\circ}C$	1.8		4.0	V
		T _A = -30°C	2.0			V
VIHT	HIGH level input threshold voltage	T _A = + 25°C	1.8			v
		$T_A = +85^{\circ}C$	1.8			V
		$T_{A} = -30^{\circ}C$	1		1.1	v
VILT	LOW level input threshold voltage	$T_A = +25^{\circ}C$	1		1.1	V
		T _A = +85°C			0.9	V
		T _A = -30°C	0.4		1.1	v
VIL	LOW level input voltage	T _A = + 25°C	0.4		1.1	V
		0.4		0.8	v	
TA	Operating ambient temperature		-30	+ 25	+ 85	°C

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

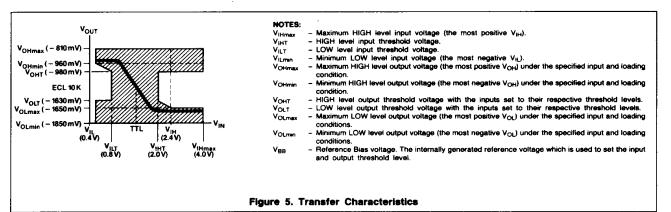
10124

PARAMETER			MIN	түр	MAX	UNIT	TEST CONDITIONS ²
		T _A = -30°C	-1060		-890	mV	
Vari	HIGH level output voltage	T _A = + 25°C	-960		-810	mV	For Q_n outputs, apply V_{Hmax} to all inputs. For \overline{Q}_n outputs, apply V_{ILmin} to all inputs.
		T _A = +85°C	-890		-700	mV	
		T _A = -30°C	-1080		·	mV	For Q_n outputs, apply V_{IHT} to D_1 input with V_{IHmax}
VOHT	HIGH level output threshold voltage	T _A = + 25°C	-980			mV	applied to all other inputs. For $\overline{\Omega}_n$ outputs, apply V _{ILT} to D ₁ input with V _{IHmax}
	in concept	T _A = +85°C	-910			mν	applied to all other inputs.
		$T_A = -30^{\circ}C$			- 1655	mV	For Q_n outputs, apply V_{ILT} to D_1 input with V_{Hmax}
	LOW level output threshold voltage	T _A = +25°C			-1630	mV	applied to all other inputs. For \overline{Q}_n outputs, apply V _{IHT} to D ₁ input with V _{IHmax}
		T _A = +85°C]		-1595	mV	applied to all other inputs.
	LOW level output voltage	T _A = -30°C	- 1890		-1675	m∨	
VOL		T _A = +25°C	-1850		- 1650	mV	For Q _n outputs, apply V _{ILmin} to all inputs. For Q _n outputs, apply V _{ILmax} to all inputs.
		T _A = +85°C	-1825		1615	mV	
		T _A = -30°C			72	mA	
-lee	V _{EE} supply	T _A = +25°C		53	66	mA	Apply V _{IHmax} to all inputs.
	current	T _A = +85°C			72	mA	
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation			0.016		v/v	
ΔV _{OL}	LOW level output voltage compensation	T _A = +25°C		0.250		v/v	
$\frac{\Delta V_{BB}}{\Delta V_{EE}}$	Reference Bias voltage compensation			0.148		v/v	

DC ELECTRICAL CHARACTERISTICS GND = 0V, $V_{CC} = +5.0V \pm 0.010V$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω to $-2.0V \pm 0.010V$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

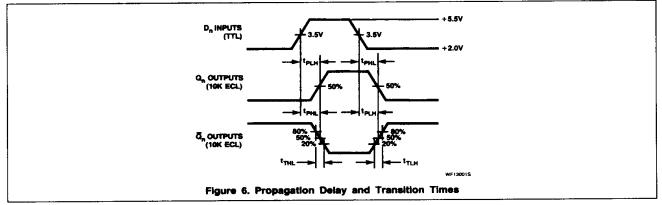

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC testing.
The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

January 30, 1986

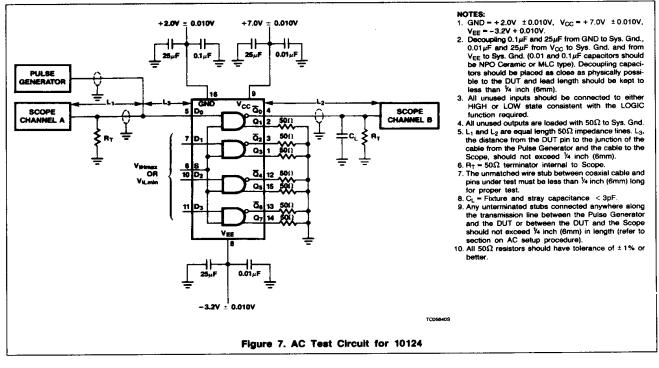
10124

PARAMETER			MIN	ТҮР	MAX	UNIT	TEST CONDITIONS
	Clamp input	S input			-1.5	v	Apply -20mA to S input.
Vik	voltage	other inputs					Apply -10mA to each input under test, one at a time.
V _{BIN}	Input breakdown	voltage	5.5			V	Apply 1.0mA to each input under test, one at a time.
	S input			- 12.8	mA	Apply VF(0.40V) to S input and VR(2.4V) to all other inputs.	
۱F	Forward current	other inputs			-3.2	mA	Apply VF(0.40V) to each input under test, one at a time with VR(2.4V) applied to all other inputs.
		S input			200	μA	Apply VR(2.4V) to S input with VF(0.4V) to all other in- puts.
IA	Reverse current	other inputs			50	μA	Apply VR(2.4V) to each input under test, one at a time with VF(0.4V) to all other inputs.
	Supply current	T _A = -30°C			16	mA	
ICCH	HIGH	T _A = +25°C			16	mA	Apply V _{IHmax} to all inputs.
	(positive)	T _A = +85°C			18	mA	
ICCL	Iccl Supply current LOW (positive)		1		25	mA	Ground all inputs.

DC ELECTRICAL CHARACTERISTICS GND = 0V, $V_{CC} = +5.0V \pm 0.010V$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to +85°C. Output loading with 50 Ω to -2.0V ±0.010V unless otherwise specified

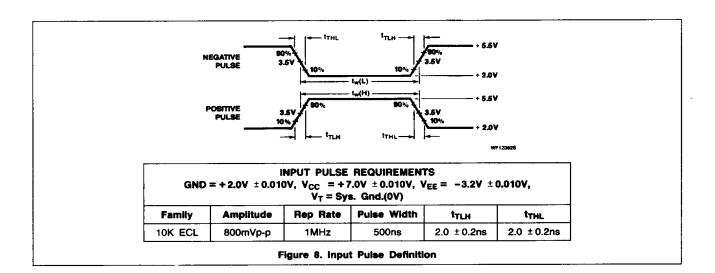


10124


AC ELECTRICAL CHARACTERISTICS GND = $\pm 2.0V \pm 0.010V$, $V_{CC} = \pm 7.0V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$, V_T = System Grd.

	T _A =	= -30°C T _A = + 25°C			T _A = +85°C		UNIT	TEST CONDITIONS	
PARAMETER	Min	Max	Min	Тур	Max	Min Max	UNIT		
t_{PLH} Propagation delay t_{PHL} D _n to Q _n , Q _n	1.0 1.0	6.5 6.5	1.0 1.0	3.5 3.5	6.0 6.0	1.0 1.0	6.5 6.5	ns ns	Figs. 6, 7, 8
t _{TLH} Transition time t _{THL} 20% to 80%, 80% to 20%	1.3 1.3	4.1 4.1	1.3 1.3	2.5 2.5	3.9 3.9	1.3 1.3	4.1 4.1	ns ns	Figs. 6, 7, 8

AC WAVEFORMS


TEST CIRCUITS AND WAVEFORMS

January 30, 1986

6--138

10124

January 30, 1986

6-139

This Material Copyrighted By Its Respective Manufacturer

Downloaded from Datasheet.su